Popular sepsis prediction tool less accurate than claimed

The algorithm is currently implemented at hundreds of U.S. hospitals.

11:41 AM

Author | Kelly Malcom

doctor holding tablet hospital room with stethoscope
Getty Images

One in three patients who dies in a hospital has sepsis, a severe inflammatory response to an infection, marked by organ dysfunction, according to the Centers for Disease Control and Prevention. This heavy toll makes predicting which patients are at risk for developing the devastating condition a top priority for clinicians.

Additional motivation to identify and treat sepsis cases lies in the fact that sepsis serves as a system-level quality measure, with hospitals judged by both the by the federal Department of Health and Human Services and the CDC on their sepsis rates. Complicating efforts to reduce sepsis is how difficult it can be to diagnose—both accurately and quickly.

"Sepsis is something we can know occurs with certainty after the fact, but when it's unfolding, it's often unclear whether a patient has sepsis or not," said Karandeep Singh, MD, MMSc, assistant professor of Learning Health Sciences and Internal Medicine at Michigan Medicine. "But the cornerstone of sepsis treatment is timely recognition and timely therapy."

Singh and his colleagues recently evaluated a sepsis prediction model developed by Epic Systems, a healthcare software vendor used by 56% of hospitals and health systems in the U.S. In a new paper published in JAMA Internal Medicine, they reveal that the prediction tool performs much worse than indicated by the model's information sheet, correctly sorting patients on their risk of sepsis just 63% of the time.

Like Podcasts? Add the Michigan Medicine News Break on iTunes, Google Podcast or anywhere you listen to podcasts.

The discrepancy lies in how the model was developed, explained Singh. The first problem, he says, is that the model incorporates data from all cases billed as sepsis, which is problematic because "people bill differently across services and hospitals and it's been well recognized that trying to figure out who has sepsis based on billing codes alone is probably not accurate." Second, in the model's development, the onset of sepsis was defined as the time the clinician intervened—for example, ordering antibiotics or lab work.

"In essence, they developed the model to predict sepsis that was recognized by clinicians at the time it was recognized by clinicians. However, we know that clinicians miss sepsis."

To evaluate the model using a definition of sepsis more closely aligned to that used by Medicare and CDC, the research team looked at close to 40,000 hospitalizations at Michigan Medicine from 2018-2019, removing scores from patients who were alerted by the model to have sepsis after a clinician had already intervened. Doing so brought the tool's area under the curve from 76-83% as reported by Epic Systems to 63% determined by the validation study.

What's more, the model sent out an alert on nearly 1 in 5 of all patients, with most of those patients not actually having sepsis. "When it alerts, the chance of a patient actually has sepsis during the remainder of their hospital stay is 12%. What that essentially means is that even if you only evaluated people the first time the system alerted, you'd still need to evaluate 8 people to find one case of sepsis," said Singh.

MORE FROM THE LAB: Subscribe to our weekly newsletter

Prediction tools come with a trade-off, noted Singh. "The tradeoff is basically between generating alerts on a patient who turned out not to have the predicted condition or not generating alerts on patients who do." But in this instance, if a health system is using the Epic sepsis model to improve its quality measures, "it's not really going to be able to do that."

The results of the study point to a need for more regulatory oversight and governance of clinical software tools, said Singh, as well as a need for more open-source models that can be easily externally validated and turned off if it turns out they aren't useful.

He added that Epic isn't wrong in their analysis. "We differ in our definition of the onset and timing of sepsis. In our view, their definition of sepsis based on billing codes alone is imprecise and not the one that is clinically meaningful to a health system or to patients."

Additional authors include Andrew Wong, M.D.; Erkin Otles, MEng; John P. Donnelly, Ph.D.; Andrew Krumm, Ph.D.; Jeffrey McCullough, Ph.D.; Olivia DeTroyer-Cooley, B.S.E.; Justin Pestrue, MEcon; Marie Phillips, B.A.; Judy Konye, M.S.N., R.N.; Carleen Penoza, MHSA, R.N.; and Muhammad Ghous, MBBS.

Paper cited: "External Validation of a Widely Implemented Proprietary Sepsis Prediction Model in Hospitalized Patients," JAMA Internal Medicine. DOI: 10.1001/jamainternmed.2021.2626


More Articles About: Lab Report Hospitals & Centers Health Care Quality Health Care Delivery, Policy and Economics All Research Topics Future Think Emerging Technologies Patient Safety
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories expert at stand hearing in suit
Health Lab
Keep telehealth alive and well, experts tell Senate subcommittee
Telehealth coverage by Medicare is scheduled to expire at the end of 2024; experts told Senators what they think should happen to preserve it.
man in scrubs sitting with scrub cap with headset on in clinical setting
Health Lab
Medical students use virtual reality to improve diabetes
A physician invents a creative approach for medical students in diabetic care.
physician talking to patient with lab researcher in background
Health Lab
Older adults left out of clinical research trials
Including older adults in research can be beneficial, explains a Michigan Medicine research, who says more should, and can be, done to have their insights.
heart organ yellow blue
Health Lab
Irregular heartbeat after valve surgery increases risk of stroke, death
Postoperative atrial fibrillation, commonly known as Afib, has traditionally been viewed as benign and limited. But a study led by researchers at the University of Michigan Health Frankel Cardiovascular Center finds that postoperative atrial fibrillation increases the risk of strokes and permanent Afib — and is linked to worse long term survival — after heart valve surgery.
older woman on phone with credit card in hand
Health Lab
Health plays a role in older adults' vulnerability to scams
Most older adults have faced an attempted scam, and some have been defrauded, but rates were higher among those with health problems or disabilities.
IV drip
Health Lab
Monitoring program flags cancer patients at risk of highly toxic chemotherapy side effects
Researchers from the University of Michigan Health Rogel Cancer Center have developed a monitoring system using a research genetics program to trigger alerts about cancer patients suspected to have the DPYD gene variant.